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Abstract

High order methods are of great interest in the study of turbulent flows in complex geometries by means of direct

simulation. With this goal in mind, the incompressible Navier–Stokes equations are discretized in space by a compact

fourth order finite difference method on a staggered grid. The equations are integrated in time by a second order semi-

implicit method. Stable boundary conditions are implemented and the grid is allowed to be curvilinear in two space

dimensions. The method is extended to three dimensions by a Fourier expansion. In every time step, a system of linear

equations is solved for the velocity and the pressure by an outer and an inner iteration with preconditioning. The con-

vergence properties of the iterative method are analyzed. The order of accuracy of the method is demonstrated in

numerical experiments. The method is used to compute the flow in a channel, the driven cavity and a constricted

channel.
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1. Introduction

Spectral and pseudospectral methods are accurate methods for direct numerical simulation of turbulent

flow governed by the incompressible Navier–Stokes equations. The disadvantage with these methods is that

they are restricted to simple geometries such as channels. Finite difference methods of high order do

not have this restriction and are almost as accurate as a spectral method. In this paper we develop such
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a method of fourth order accuracy in space and second order in time for two-dimensional problems (2D)

and indicate how the method is extended to three dimensions (3D). The level of the discretization error is

the important issue, not so much the order of accuracy, but a certain error level is more easily obtained with

a high order method. High order is the means to reach the goal: a small discretization error in the solution.

The same accuracy is achieved with fewer grid points or the solution has better accuracy on the same grid
compared to a second order method. The solution in curvilinear body-fitted coordinates is obtained by a

mapping of the equations to a rectangular grid where the derivatives are approximated. The solution is

computed in the primitive variables defined on a staggered grid with local velocity components to avoid

spurious oscillations. High order accuracy in the spatial approximations is also necessary for large eddy

simulation (LES) in order not to interfere with the subgrid model with terms proportional to the square

of the grid size [17]. It is not necessary for LES to have high order also in the time discretization. The error

caused by the time stepping can be controlled independently by changing the length of the time step.

Let u and v be the velocity components in the x- and y-direction, respectively, p the pressure, and m the
kinematic viscosity. The Reynolds number is defined by Re = ub‘/m for some characteristic velocity ub and

length scale ‘. By defining w = (uv)T, differentiation with respect to an independent variable, such as time t,

by a subscript, and the nonlinear and linear terms
NðwÞ ¼ ðw � rÞw; Lðw; pÞ ¼ rp � Re�1Dw;
the Navier–Stokes equations in two dimensions are
wt þNðwÞ þLðw; pÞ ¼ 0; ð1Þ

r � w ¼ 0: ð2Þ

The space discretization ofN and L in (1) is in compact form [27] and the equations are integrated in time

by a semi-implicit method. The approximations of the first and second derivatives are defined implicitly and

they satisfy systems of linear equations with a tridiagonal system matrix. The number of terms in the com-

putational domain is reduced by orthogonal grids in the physical domain. The nonlinear convection term

N is extrapolated from the previous time steps. The linear part of the discretized momentum equations L
and the discretized divergence equation (2) are solved simultaneously at the new time level. A system of

linear equations has to be solved for w and p in every time step. The solution is computed by an iterative
method until convergence is reached. The method is shown to be of fourth order in space and of second

order in time in w and p in numerical experiments. The method is analyzed with respect to boundary con-

ditions and stability in [20,21,26,35]. Other examples of the accuracy and performance of the method are

found in [4,6].

The difference scheme approximates the Navier–Stokes equations in its original form including the con-

tinuity equation and well-posed boundary conditions. In this way the usual difficulty of forming boundary

conditions for the pressure equation is avoided [3,42]. The solution procedure for the complete algebraic

system of equations uses a factorization that requires the solution of a subsystem that corresponds to a dis-
crete elliptic equation of Poisson type. However, the boundary conditions for this equation are automati-

cally obtained as part of the factorization.

There are stability constraints on the time step Dt due to the semi-implicit time integration. Other con-

straints on Dt are introduced by accuracy requirements and the convergence of the iterative solvers. It is

shown in [9] that an implicit method is faster than a semi-implicit method for fully developed turbulent flow

in a boundary layer but the CFL-number for good accuracy is rather low, 0.5–1. In other flow regimes, such

as transitional flow, a much smaller time step is necessary for accuracy [15], thus reducing the time savings

with an implicit method.
The method is extended to three space dimensions aiming at direct numerical simulation of turbulent

flow. The solution is assumed to be periodic in the spanwise direction and the variables are expanded in
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Fourier series in that direction. One system of linear equations for the Fourier components is solved for

each wavenumber in every time step. Spectral accuracy is obtained in one direction and the convergence

of the iterative solution is improved by the terms introduced by the third dimension. Preliminary results

including turbulent flow are found in [4,5].

The novel features of our method are: A fourth order Padé approximation for curvilinear grids is devised
with local velocity components on a staggered grid for stability. Stable inflow and outflow boundary con-

ditions supported by analysis guarantee a unique pressure making an approximate factorization of the sys-

tem matrix possible with nonsingular submatrices.

These submatrices are not known explicitly but preconditioners of them are based on second order dis-

cretizations. The error caused by the termination of the iterations in the solution of the systems of linear

equations is controlled quantitatively. This is not the case in other methods in general use, e.g. projection

methods. Quantitative control of the discretization errors is obtained by adaptive methods, but this issue is

not addressed in this paper. The method is extended to three dimensions by expanding the solution in Fou-
rier series making the complete 3D method unique.

Direct numerical simulation of turbulent flow is reviewed in [15]. Other finite difference methods of high

order for the Navier–Stokes equations are found in [2,23,28,30,33,34,41]. The velocity–vorticity equations

are solved in [2] with a fourth order compact method and advanced in time by a semi-implicit scheme. The

stencil is a wide fourth order centered difference in [23] applied to the equations (1) and in [30] the fourth

order differential equation for the streamfunction is discretized by fourth order centered differences. The

coupled streamfunction-vorticity equation is solved with a compact scheme in [28]. A fourth order method

is developed and tested for incompressible flow in [33] and a sixth order method for compressible flow is
presented in [34] on a staggered grid in a straight channel.

In the next section, the space and time discretizations are described and compared to other high order

schemes. The method for computation of w and p in every time step is discussed in Section 3. The conver-

gence of the iterative method is studied and it is compared to other similar methods. Finally, the flows in a

straight channel, in a lid-driven cavity and a constricting channel with a curvilinear grid are computed. The

accuracy and efficiency of the method is demonstrated in the numerical experiments.
2. The discretization

In this section the discrete equations in space and time are derived for a curvilinear grid. The approxi-

mations in space are compact and of fourth order accuracy. The solution is advanced in time by a method

where the space operator is split so that the linear term in (1) and the divergence relation (2) are treated

implicitly and the nonlinear term is extrapolated. Such methods are reviewed in [24] and [43].

2.1. Time discretization

Eqs. (1) and (2) are discretized in time by extrapolating NðwÞ from time tn � r + 1 up to tn with an rth

order formula to tn + 1 and applying the rth order backward differentiation formula (BDF-r) [22] to wt

and Lðw; pÞ at tn + 1 to obtain
Xr
j¼0

ajw
nþ1�j þ DtLðwnþ1; pnþ1Þ ¼ �Dt

Xr
j¼1

bjNðwnþ1�jÞ: ð3Þ
The coefficients aj are such that the sum approximates wt at t
n + 1 and the b coefficients are defined by
wnþ1 ¼
Xr
j¼1

bjw
nþ1�j þ OðDtrÞ;
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cf. [24]. The time step Dt = tn + 1 � tn is constant in the interval of interest. In addition to (3), wn + 1 satisfies

the discretization of the divergence equation in (2). The result is a linear system of equations to solve for

wn + 1 and pn + 1 in every time step. We have implemented the second order method with r = 2 implying

a0 = 3/2, a1 = �2, a2 = 1/2, b1 = 2, b2 = �1. The integration can be started at t0 with r = 1.

The explicit part of the integration introduces restrictions on the the timestep for stability. This is ana-
lyzed in [19] assuming Oseen flow with periodic boundary conditions.

A different class of time discretizations is derived from integrating (1) in time
Fig. 1.

empty
wnþ1 � wn ¼ �
Z tnþ1

tn
NðwÞ dt �

Z tnþ1

tn
Lðw; pÞ dt: ð4Þ
The first integral is then approximated by an explicit Adams–Bashforth method and the second integral

by an implicit Adams-Moulton method [22]. The continuity equation is simultaneously satisfied by wn + 1.

A common combination is the Adams–Bashforth method of second order and the implicit trapezoidal (or

Crank–Nicolson) method [25,29,38]. The Crank–Nicolson scheme is combined with an explicit Runge–

Kutta method in [2].

2.2. Space discretization

To be able to solve the Navier–Stokes equations in more complicated geometries than a straight channel

with a Cartesian grid, the equations are mapped from computational space (n,g) into physical space (x,y) by

a univalent right-hand sided orthogonal transformation
x ¼ xðn; gÞ; y ¼ yðn; gÞ: ð5Þ

The topology of the physical domain X is assumed to be like a channel: an upper and a lower wall with no-

slip boundary conditions, an inflow boundary to the left and an outflow boundary to the right or with no-
slip conditions on all walls. The computational domain is a rectangle.

Define ~u and ~v to be the local velocity components in the coordinate directions n and g, respectively, and
for consistency ~p ¼ ~pðn; gÞ ¼ pðxðn; gÞ; yðn; gÞÞ. The transformed system of partial differential equations is

discretized on a staggered grid with grid size (Dn,Dg). The velocity components ~u and ~v are assigned at

the locations ðni�1
2
; gjÞ and ðni; gj�1

2
Þ, respectively, and the pressure values are assigned at a grid point (ni,gj)

in the usual manner, see Fig. 1.

The reason for using locally defined velocity components on staggered orthogonal grids is that no par-

asitic odd–even oscillatory solutions appear, no artificial viscosity is needed, and ghost values outside X are
required for only one velocity component at each boundary, see Fig. 1. Furthermore, with this formulation

the structure of the equations is similar to the Cartesian case, especially for the gradient term $p and the

divergence $ Æ w. They are
v

u

p

The staggered grid. The boundary is marked by a solid line, the inner points in the grid have filled symbols, and variables at the

symbols are determined by the boundary conditions.
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rp ¼
n�1
1 ~pn;

n�1
2 ~pg

" #
; r � w ¼ 1

n1n2

o

on
n2~uð Þ þ o

og
n1~vð Þ

� �
; ð6Þ
where n1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n þ y2n

q
and n2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2g þ y2g

q
are the scale factors of the transformation (5). Unfortunately, the

viscous part becomes more complicated including also first derivatives.

The derivatives for the gradient and the divergence operators (6) are centered in the middle between two

variable values, while all other derivatives are centered at the grid points. Therefore, we define two different

fourth order compact operators, see [14,27], one for regular grids (7) and one for staggered grids (8). Com-
pact operators have the advantage of smaller error constant in the truncation error and fewer numerical

boundary conditions are required. For a function f and grid spacing Dn, we have the formulas
1

6
f 0
i�1 þ

2

3
f 0
i þ

1

6
f 0
iþ1 ¼

1

2Dn
ðfiþ1 � fi�1Þ; ð7Þ

1

24
f 0
i�1 þ

11

12
f 0
i þ

1

24
f 0
iþ1 ¼

1

Dn
ðfiþ1=2 � fi�1=2Þ: ð8Þ
In order to solve for the unknowns f 0, we need closed systems of the form Pf 0 = Qf for the regular grids and

Rf 0 = Sf for the staggered grids. No boundary conditions are available for the derivatives, and we use one-

sided formulas for them. For the function itself on the right-hand side of (7) and (8), we could use the phys-

ical boundary conditions. However, it is convenient to define P, Q, R, S independently of the particular

problem, and therefore we use one-sided formulas also for f, see [4,6,21,35]. The complete operators in

the interior (i = 1,. . .,Nx�1) and at the left (i = 0) and right (i = Nx) boundaries are in the n direction
R1f

0 = S1f:
R1f 0 ¼

1
12672

ð24f 0
�1

2

þ 528f 0
1
2

Þ;
1
24
ðf 0

i�1
2

þ 22f 0
iþ1

2

þ f 0
iþ3

2

Þ; i ¼ 0; . . . ;Nx � 1;

1
12672

ð528f 0
Nx�1

2

þ 24f 0
Nxþ1

2

Þ;

8>>><
>>>:

S1f ¼

1
12672Dn ð�577f 0 þ 603f 1 � 27f 2 þ f3Þ;
1
Dn ðfiþ1 � fiÞ; i ¼ 0; . . . ;Nx � 1;

1
12672Dn ð�fNx�3 þ 27f Nx�2 � 603f Nx�1 þ 577f Nx

Þ:

8>>><
>>>:

ð9Þ
R2f
0 = S2f:
R2f 0 ¼

1
24
f 0
1;

1
24
ðf 0

i�1 þ 22f 0
i þ f 0

iþ1Þ; i ¼ 1; . . . ;Nx � 1;

1
24
f 0
Nx�1;

8>><
>>:

S2f ¼

1
576Dn ðf�1

2
� 27f 1

2
þ 27f 3

2
� f5

2
Þ;

1
Dn ðfiþ1

2
� fi�1

2
Þ; i ¼ 1; . . . ;Nx � 1;

1
576Dn ðfNx�5

2
� 27f Nx�3

2
þ 27f Nx�1

2
� fNxþ1

2
Þ:

8>><
>>:

ð10Þ
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P f 0 = Q f:
Pf 0 ¼

1
108

ð6f 0
0 þ 18f 0

1Þ;
1
6
ðf 0

i�1 þ 4f 0
i þ f 0

iþ1Þ; i ¼ 1; . . . ;Nx � 1;
1

108
ð18f 0

Nx�1 þ 6f 0
Nx
Þ;

8><
>:

Qf ¼

1
108Dn ð�17f 0 þ 9f 1 þ 9f 2 � f3Þ;
1

2Dn ðfiþ1 � fi�1Þ; i ¼ 1; . . . ;Nx � 1;

1
108Dn ðfNx�3 � 9f Nx�2 � 9f Nx�1 þ 17f Nx

Þ:

8>><
>>:

ð11Þ
The staggered alternatives R1 and S1 are employed for computation of the pressure gradient, and R2, S2 are

applied to compute the divergence of the velocity field. Note that a second order approximation is obtained

in the interior when R1f 0 ¼ fiþ1
2
and R2f 0 ¼ Pf 0 ¼ f 0

i .

Extra indices n and g on the operators are introduced to indicate the coordinate direction. These formulas

are one-dimensional, and are applied for all grid lines in the n- or the g-direction. Since ~u and ~v are not storedat
the same points, fourth order averaging formulas E~u and E~v are required. The interpolations used are of

fourth order accurate compact type. For a function f, we have the formula for the interpolated value f*
1

6
f �
i�1 þ f �

i þ 1

6
f �
iþ1 ¼

2

3
ðfi�1=2 þ fiþ1=2Þ ð12Þ
valid on inner grid locations. Due to the elimination of boundary data in the solution technique, interpo-

lations at the boundaries are not required.

Let ~w ¼ ð~u;~vÞ. Then the complete discrete equations are
a0~u
nþ1 þ Dt

1

n1
R�1
1n S1n~p

nþ1 � Re�1Lnð~wnþ1Þ
� �

¼ �
Xq
j¼1

aj~u
nþ1�j � Dt

Xq
j¼1

bjN nð~wnþ1�jÞ; ð13aÞ

a0~v
nþ1 þ Dt

1

n2
R�1
1g S1g~p

nþ1 � Re�1Lgð~wnþ1Þ
� �

¼ �
Xq
j¼1

aj~v
nþ1�j � Dt

Xq
j¼1

bjN gð~wnþ1�jÞ; ð13bÞ

1

n1n2
R�1
2n S2nðn2~unþ1Þ þ R�1

2g S2gðn1~vnþ1Þ
� �

¼ 0: ð13cÞ
The Laplace operators Ln and Lg are
Lnð~wÞ ¼ 1
n1n2

ðP�1
n Qnðn2n1 P

�1
n Qn~uÞ þ P�1

g Qgðn1n2 P
�1
g Qg~uÞ �

n2
1;gþn2

2;n

n1n2
~u

þ 2n1;g
n1

P�1
n QnE~v�

2n2;n
n2

P�1
g QgE~vþ P�1

n Qnð
n1;g
n1

� n2;g
n2
ÞE~vÞ;

Lgð~wÞ ¼ 1
n1n2

ðP�1
n Qnðn2n1 P

�1
n Qn~vÞ þ P�1

g Qgðn1n2 P
�1
g Qg~vÞ �

n2
1;gþn2

2;n

n1n2
~v

� 2n1;g
n1

P�1
n QnE~uþ

2n2;n
n2

P�1
g QgE~u� P�1

n Qnð
n1;g
n1

� n2;g
n2
ÞE~uÞ;

ð14Þ
and the nonlinear terms are
N nð~wÞ ¼ ~u 1
n1
P�1
n Qn~uþ

n1;g
n1n2

E~v
� �

þ E~v 1
n2
P�1
g Qg~u�

n2;n
n1n2

E~v
� �

;

N gð~wÞ ¼ E~u 1
n1
P�1
n Qn~v�

n1;g
n1n2

E~u
� �

þ ~v 1
n2
P�1
g Qg~vþ

n2;n
n1n2

E~u
� �

;

and ni,n, ni,g, i = 1,2, are derivatives of the scale factors with respect to n and g. They are evaluated with

fourth order accurate numerical differentiation.
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2.3. Boundary conditions

Stable boundary conditions for the Stokes and the linearized Navier–Stokes equations on staggered

grids have been developed in [21,26,35]. We apply conditions similar to these in our Navier–Stokes solver

in the domain X. At solid walls the velocity satisfies the no-slip condition. No numerical boundary condi-
tion is necessary for p.

Suppose that X has an inflow boundary at x = xin for y 2 [yin1,yin2] and an outflow boundary at x = xout
for y 2 [yout1,yout2]. With Dirichlet boundary conditions at the inflow and the outflow, the set of boundary

conditions in the continuous formulation in a Cartesian coordinate system is
uðxin; yÞ � 1
lin

R yin2
yin1

uðxin; yÞdy ¼ winðyÞ; uðxout; yÞ ¼ uoutðyÞ;
vðxin; yÞ ¼ vinðyÞ; vðxout; yÞ ¼ voutðyÞ;R yin2

yin1
pðxin; yÞ dy þ

R yin2
yin1

uðxin; yÞ dy ¼ pin;

ð15Þ
where
R yin2
yin1

winðyÞ dy ¼ 0 and lin ¼ y in2 � yin1. The velocity profiles at the inlet and the outlet are given by

(uin,vin) and (uout,vout) and pin is a constant. In the discretization, the last condition in (15) replaces the first

condition at xin at one grid point of the inflow boundary. This point is usually chosen as the midpoint but

other points also work well.

An alternative at the outflow boundary is to prescribe a zero streamwise derivative of the velocity, i.e. a

Neumann condition (cf. [2]). Then the continuous conditions are
uðxin; yÞ ¼ uinðyÞ; ouðxout ;yÞ
ox � 1

lout

R yout2
yout1

ouðxout;yÞ
ox dy ¼ 0;

vðxin; yÞ ¼ vinðyÞ; ovðxout;yÞ
ox ¼ 0;R yout2

yout1
pðxout; yÞ dy þ

R yout2
yout1

ouðxout;yÞ
ox dy ¼ pout;

ð16Þ
where pout is an arbitrary constant and lout = yout2 � yout1. Also here the last condition replaces the first

condition at xout in the midpoint of the discrete implementation. The well-posedness of boundary condi-
tions similar to (15) and (16) is analyzed in [20,26,35]. The conditions (15) and (16) can be analyzed by

the same techniques. The pressure is well defined by the last conditions in (15) and (16) and their discreti-

zation is easily incorporated in our iterative method in the next section. Furthermore, the system matrix of

the discretized equations is nonsingular and the equations can be solved to machine precision.

The boundary of the domain X is located at the grid points where p is defined, see Fig. 1. One row of

extra ghost variables for one of the velocity components are defined outside X to simplify the application

of the boundary conditions.
2.4. Extension to 3D

The velocity components u, v, and w and the pressure p are expanded in Fourier series in the third dimen-

sion z assuming a periodic solution in this direction. The grid in a x–y plane is identical at all grid stations

zl, l = 1. . .Nz. Let Lz be the length of the domain in the spanwise direction and bm = 2pm/Lz the mth wave-

number. Then zl = Lzl/Nz and the Fourier representation of p at a grid point (xj, yk) is
pðxj; yk; zlÞ ¼
XNz=2

m¼�Nz=2þ1

p̂ðxj; ykÞ expðibmzlÞ:
The remaining variables have the same type of expansion. The Fourier coefficients of the velocity and the

pressure are integrated in time as in (3) for each wavenumber. The nonlinear term N̂ at tn is evaluated

in physical space after Fourier transformation of the velocity and the difference approximations of the
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derivatives in the x–y plane. Then N is transformed back again to Fourier space. The system of linear

equations to solve for û; v̂; ŵ; and p̂ in each time step is discussed in Section 3.3.
3. Iterative method

A system of linear equations has to be solved for the velocity and the pressure at the inner points of the

grid and t = tn + 1 according to (13). The iterative method for solution of the system is described here and its

convergence properties are analyzed. A comparison with other iteration algorithms is made. The form of

the linear system is general, making the algorithm suitable also for other semi-implicit methods (3) and (4).

The norm in this section is the Euclidean vector norm and its subordinate spectral matrix norm.

3.1. Algorithm

Let w denote the vector of local velocity variables in X, �w the ghost values outside X and on the bound-

ary (see Fig. 1), and let p be the pressure vector. Then w; �w; and p satisfy a system of linear equations
A0 A1 G

A2 C B

D0 D1 0

0
B@

1
CA

w

�w

p

0
B@

1
CA ¼

b
�b

0

0
B@

1
CA: ð17Þ
Let L denote the discretization of the Laplace operator in the inner points, see (14). Then A0 is defined by
A0 ¼ a0I � Re�1DtL: ð18Þ

The part of the Laplace operator operating on the velocity components on and outside the boundary is

represented by A1. The gradient approximation G has linearly dependent columns and p is not uniquely

defined unless B 6¼ 0. With our choice of boundary conditions in (15) and (16), C is nonsingular and diag-

onal except for a diagonal block with nonzero elements and B has rank one and one row different from

zero. An LU-factorization of a small part of C due to the boundary integrals is stored for use in the iterative

solver. The values in the interior are coupled to the boundary values and the outer ghost values via the

sparse matrix A2. The boundary conditions supported by a stability analysis define A2, B, and C. The

approximation of the divergence is (D0,D1). The matrices A0, D0, and G are dense due to the implicit

approximation of the derivatives and are not known explicitly. The right-hand side, b and �b, depends on
old values of w and the boundary conditions.

After expressing �w in w; p; and �b and defining
Â ¼ A0 � A1C
�1A2; Ĝ ¼ G� A1C

�1B; c ¼ b� A1C
�1�b;

D̂ ¼ D0 � D1C
�1A2; B̂ ¼ �D1C

�1B; d ¼ �D1C
�1�b;
the system to be solved is
Â Ĝ

D̂ B̂

 !
w

p

� �
¼

c

d

� �
: ð19Þ
Since A1 � h�2Dt/Re and C�1 and A2 are of Oð1Þ, Â has the same form as A0 in (18)
Â ¼ a0I � Re�1DtL̂; ð20Þ

but now the boundary conditions are included in the discrete Laplace operator. For the gradient approx-

imation we have G � h�1Dt and Ĝ � h�1Dt, and the divergence approximation satisfies D0 �
h�1; D1 � h�1; and D̂ � h�1, where Dn, Dg � h.
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In the iterative method we propose for solving (19), only the result of a multiplication of an arbitrary

vector by the matrix is needed. It follows from (13) that this operation is performed by operating with

Q, S, or E on w and p and one or two solutions of a tridiagonal system defined by P or R in (9)–(11).

The system (19) is rewritten as
Mx ¼ b; ð21Þ
where xT ¼ ðxT1 ; xT2 Þ ¼ ðwT; pTÞ; bT ¼ ðbT1 ; bT2 Þ ¼ ðcT; dTÞ. An approximate factorization of M in (21) is
~M ¼ Â 0

D̂ I

 !
I a�1

0 Ĝ

0 �ða�1
0 D̂Ĝ� B̂Þ

 !
¼ Â a�1

0 ÂĜ

D̂ B̂

 !
: ð22Þ
It differs from the factorization in [38] in that B̂ 6¼ 0 here due to the boundary conditions (15) and (16).

The difference between M and its approximation ~M is
M � ~M ¼ 0 a�1
0 Re�1DtL̂Ĝ

0 0

 !
: ð23Þ
In an outer fixed point iteration the correction dx is computed as
xðkþ1Þ ¼ xðkÞ þ dxðkÞ ¼ xðkÞ þ ~M
�1ðb�MxðkÞÞ ¼ xðkÞ þ ~M

�1
rðkÞ: ð24Þ
One or two outer iterations usually suffice depending on how well ~M approximates M. It is important to

iterate until a convergence criterion has been fulfilled to have a quantitative measure of the iteration error.

The solution of
~MdxðkÞ ¼ rðkÞ ð25Þ

is computed using the factorization (22). Then with forward and backward substitution we have
1: Ây1 ¼ r1; ð26aÞ

2: y2 ¼ r2 � D̂y1; ð26bÞ

3: ða�1
0 D̂Ĝ� B̂Þdx2 ¼ �y2; ð26cÞ

4: dx1 ¼ y1 � a�1
0 Ĝdx2; ð26dÞ
where dxðkÞ ¼ ðdxT1 ; dxT2 Þ
T
and rðkÞ ¼ ðrT1 ; rT2 Þ

T
. If B = 0 as in [38] then B̂ ¼ 0 and Ĝ ¼ G. Since G does not

have full rank, D̂Ĝ in (26c) is singular. This is not a problem for straight channels but for curvilinear geom-

etries the equation has no solution. From the definition of the residual in (24) it follows that the right-hand

side in (26b) can be written as D̂z for some z. The reason why D̂z is not necessarily in the range of D̂Ĝ for a

curvilinear channel is the difference there between D and GT in (13) when n1, n2 6¼ 1. By choosing B of low

rank but such that a�1
0 D̂Ĝ� B̂ is nonsingular, a solution d x2 is guaranteed. The singularity is removed by

letting a stable choice of boundary conditions define B.
The first system of equations
Ây1 ¼ r1 ð27Þ

is solved by fixed point iteration and a preconditioning matrix ~A as in (24)
yðkþ1Þ
1 ¼ yðkÞ1 þ dyðkÞ1 ¼ yðkÞ1 þ ~A

�1ðr1 � ÂyðkÞ1 Þ: ð28Þ

The simplest choice of ~A is a�1

0 I .
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The third equation in (26)
ða�1
0 D̂Ĝ� B̂Þdx2 ¼ �y2 ð29Þ
is similar to the Poisson equation but the system matrix is not necessarily symmetric due to B̂, the coordi-
nate transformation, and boundary conditions. The matrix is not available explicitly and an iterative Kry-

lov method [18], only requiring the computation of the matrix–vector product ða�1
0 D̂Ĝ� B̂Þy for an

arbitrary y, is chosen for solution of (29). Bi-CGSTAB [45] is such a method suitable for nonsymmetric
matrices with eigenvalues away from the imaginary axis and the equivalent of only about five solution vec-

tors is used as workspace.

The convergence of the iterations is slow without a preconditioner of the matrix. Incomplete LU factor-

ization (ILU) [31] is often efficient in improving the convergence rate for discretizations of elliptic equa-

tions. A disadvantage is that an ILU preconditioner may have high storage requirements depending on

the chosen amount of fill-in in the algorithm. The same ILU factorization is used repeatedly in every time

step since a�1
0 D̂Ĝ� B̂ is constant. It requires access to the matrix elements of a�1

0 D̂Ĝ� B̂ but their values are

not known. Instead, the second order accurate approximations of the divergence and the gradient, D2 and
G2, are generated and their composition D2G2. It is sparse and the ILU factors L and U for a�1

0 D̂Ĝ� B̂ are

based on D2G2.
3.2. Convergence analysis and termination criteria

Assume that the equations in steps 1 and 2 in the inner iterations in (26) are solved so that the residuals

are q1 and q2 in the kth outer iteration
Â 0

D̂ I

 !
y1
y2

� �
¼

r1 þ q1

r2 þ q2

� �
¼ rðkÞ þ qðkÞ: ð30Þ
Then the recursion for the residual in (24) is
rðkþ1Þ ¼ b�Mxðkþ1Þ ¼ b�MxðkÞ �M ~M
�1ðrðkÞ þ qðkÞÞ

¼ ðI �M ~M
�1ÞrðkÞ �M ~M

�1
qðkÞ:

ð31Þ
After some algebraic manipulations we find from (22) and (20) that
M ~M
�1 ¼ I � F D̂Â

�1
F

0 I

 !
; F ¼ �a�1

0 Re�1DtL̂Ĝða�1
0 D̂Ĝ� B̂Þ�1

: ð32Þ
A necessary condition for the iterations (31) to converge is that the spectral radius of I �M ~M
�1

is less

than one, i.e. the eigenvalues of F D̂Â
�1

have modulus less than one. The conclusion from F in (32) is that

for a Re and a given grid, Dt has to be sufficiently small for the outer iterations to converge.

The expression for the residual in (31) is
rðkþ1Þ ¼ ðI �M ~M
�1Þkþ1rð0Þ �

Xk
j¼0

ðI �M ~M
�1ÞjM ~M

�1
qðk�jÞ;
and if kI �M ~M
�1k 6 l the termination criterion for the inner iterations (30) is iq(j)i 6 ei then
krðkþ1Þk 6 lkþ1krð0Þk þ ð1þ lÞð1� lkþ1Þ
1� l

ei:
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A sufficient condition for convergence is l < 1. It follows from (32) that this is possible if F is sufficiently

small, e.g. by taking Dt sufficiently small. Then
lim
k!1

krðkÞk ¼ 1þ l
1� l

ei;
and for r(k) to satisfy the termination criterion for the outer iterations ir(k)i 6 e0, ei should be chosen
ei 6 ð1� lÞe0=ð1þ lÞ: ð33Þ

Since l < 1 the requirements on the inner iterations are slightly more strict compared to the outer ter-

mination condition.
It follows from (26) and (30) that
q1 ¼ Ây1 � r1; q2 ¼ �ða�1
0 D̂Ĝ� B̂Þdx2 � r2 þ Dy1:
Hence, q1 and q2 are the remaining residuals when the linear systems in steps 1 and 3 in (26) are solved

iteratively. In order to satisfy (33) the stopping criteria in (26a) and (26c) are e1 ¼ e3 ¼ ei=
ffiffiffi
2

p
so that
kqðkÞk2 ¼ kq1k
2 þ kq2k

2 � e2i � e20ð1� lÞ2=ð1þ lÞ2:

The same analysis applied to (28) shows that the iterations converge if
I � ~A
�1
Â ¼ a�1

0 Re�1DtL̂ ð34Þ

satisfies Re�1DtkL̂k < a0. The right-hand side in (34) is also a multiplying factor in F defined in (32). Since

L̂ � h�2, the fixed point iteration (28) converges if h�2Dt/Re is sufficiently small.

The discrete Laplacian of fourth order D̂Ĝ is approximated by the corresponding D2G2 of second order

when the preconditioning (here the ILU factorization) is computed. The assumption that �D̂Ĝ, �D2G2,
and the preconditioner are symmetric and positive definite and Fourier analysis give a clue why this pre-

conditioner has an effect on the convergence rate of the iterative solution in (26c).

A rectangular physical domain with periodic boundary conditions is discretized with a Cartesian grid

with constant step sizes Dx and Dy. Let bx and by be the discrete wavenumbers in the x and y directions

and introduce the notation
u1 ¼ bxDx; u2 ¼ byDy; 0 6j u1 j; j u2 j6 p;

j1 ¼ Dt=Dx; j2 ¼ Dt=Dy; sj ¼ sinuj=2; cj ¼ cosuj=2; j ¼ 1; 2:
For the Fourier transformation of the equations we need the following coefficients
b1 ¼
24is1

11þ cosu1

¼ 12is1
5þ c21

; b2 ¼
24is2

11þ cosu2

¼ 12is2
5þ c22

:

The symbol of D̂Ĝ is (cf. [19])
lD̂Ĝ ¼ j1b
2
1 þ j2b

2
2 ¼ �144

j1s21
ð5þ c21Þ

2
þ j2s22
ð5þ c22Þ

2

 !
:

The second order approximation D2G2 has the symbol
lD2G2
¼ �4ðj1s21 þ j2s22Þ:
Since
36

25
lD2G2

¼ � 144

25
ðj1s21 þ j2s22Þ � lD̂Ĝ 6 �4ðj1s21 þ j2s22Þ ¼ lD2G2

; ð35Þ
the two operators are spectrally equivalent.
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Suppose that H, K, and L are symmetric and positive definite and that kj(C) is the jth eigenvalue of C.

Then one can show using Corr. 3.14 in [1] that
kjðH�1LÞkmaxðL�1KÞ P kjðH�1KÞ P kjðH�1LÞkminðL�1KÞ:

For the quotient kmax/kmin for H�1K we have
kmaxðH�1LÞkmaxðL�1KÞ
kminðH�1LÞkminðL�1KÞ

P
kmaxðH�1KÞ
kminðH�1KÞ

P
kmaxðH�1LÞkminðL�1KÞ
kminðH�1LÞkmaxðL�1KÞ

: ð36Þ
Let H denote the preconditioning matrix, L = �D2G2, and K ¼ �D̂Ĝ in (36). The convergence rate of an

iterative method usually improves when kmax/kmin is small for the system matrix. Without preconditioning

kmaxð�D̂ĜÞ=kminð�D̂ĜÞ is of Oðh�2Þ. With a suitable preconditionerH such as a modified ILU factorization,
see [1,18], kmax(�H�1D2G2)/kmin(�H�1D2G2) is of Oðh�1Þ. Since D2G2 and D̂Ĝ are spectrally equivalent

according to (35) and kmaxððD2G2Þ�1D̂ĜÞ=kminððD2G2Þ�1D̂ĜÞ is of Oð1Þ, we have from (36) that also

kmaxð�H�1D̂ĜÞ=kminð�H�1D̂ĜÞ is of Oðh�1Þ.

3.3. System of equations in 3D

With the Fourier expansion of the solution in the spanwise direction in 3D problems as described in Sec-

tion 2.4 and elimination of boundary variables, the system of linear equations corresponding to (19) is
Âuv 0 Ĝuv

0 Âw ibm�tI

D̂uv ibmD̂w B̂

0
B@

1
CA ŵnþ1

ŵnþ1

p̂nþ1

0
B@

1
CA ¼

cuv

cw
d

0
B@

1
CA: ð37Þ
This system is solved at tn + 1 for every wavenumber bm. All matrices denoted by capital letters in (37) are

real and B̂ 6¼ 0 only for b0 = 0. Both Âuv and Âw have the form
Â ¼ a0I � Re�1DtðL̂xy � b2
mIÞ; ð38Þ
where L̂xy in both cases is an approximation of the Laplace operator in the x–y plane (cf. (18) and (20)). The

approximate factorization in 3D is as in (22) with the submatrices substituted by
Â ¼ Âuv 0

0 Âw

 !
; Ĝ ¼ Ĝuv

ibmDtI

 !
; D̂ ¼ ðD̂uv; ibmD̂wÞ:
The system of equations is solved in the same manner as in (24) and (26). The system matrix in the equa-

tion for the pressure correction in (26c) is now
a�1
0 ðD̂Ĝ� b2

mDtIÞ � B̂: ð39Þ

An increasing wavenumber in (38) and in (39) increases the diagonal component of the matrices lead-

ing to faster iterative convergence in (28) and in the solution of (29). This is confirmed experimentally
in [5].
3.4. Comparison with other approaches

In a fractional step method [3,25,42], the momentum equation is first advanced and then a correction to

the velocity is introduced so that the divergence condition is satisfied. These are the steps also in (26). First,

the implicit part of the momentum equation is solved for y1. Then a Poisson-like equation is solved for a

pressure correction so that the continuity equation is satisfied. Finally, the velocity correction is updated.
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The SIMPLE and SIMPLER algorithms are also of this form, see [37]. The boundary conditions of the

intermediate variables cause no problems here as they do in [3,42], since they are defined by the matrices

in the semi-implicit discretization. The fractional step method is simliar to a projection method [3] where

a provisional w is computed and then projected into the divergence free subspace. These algorithms use

what corresponds to one outer iteration in (24) without quantitative control of the remaining residual in
the solution of (21). Instead, the residual is estimated qualitatively by asymptotic analysis of the residual,

usually in powers of Dt. As an alternative to solving the continuity equation (2), an elliptic equation for p

can be derived. How to construct accurate and stable boundary conditions for p in a second order method

is investigated in [39]. These difficulties are avoided in our approach.

An alternative to the approximate factorization in (22) is to solve for w in (19) and then insert w into the

continuity equation to arrive at
ðD̂Â�1
Ĝ� B̂Þp ¼ D̂Â

�1
c� d; ð40Þ
followed by
w ¼ Â
�1ðc� ĜpÞ: ð41Þ
This idea can be viewed as the result of an exact factorization of M in (21), where the left-hand side ma-

trix in (40) is the Schur complement. Also here the approximation is asymptotically correct but without

quantitative control. An outer iteration is not employed here but in our iterative method (26) only one

outer iteration is needed in most cases to satisfy the convergence criterion (see Fig. 9 in Section 4). In

an iterative solution of (40), the inverse of A is a dense matrix and expensive to compute. Therefore, Â
�1

in (40) and (41) is usually approximated by some ~A
�1

which is easy to compute. In (29), ~A
�1 ¼ a�1

0 I and

other alternatives including different approximations of Â
�1

in (40) and (41) for second order time accuracy

are found in [8,10,36]. The Schur complement in (40) is approximated in [44] yielding an approximate fac-
torization of M different from (22). With approximations of Â

�1
and outer iterations in (40) and (41) the

algorithm is of Uzawa type [7,38].

For rapid solution of (21) and (29) a method accelerating the convergence is needed. An overview of

iterative methods and preconditioners for (21) is found in [11] and the convergence of a particular precon-

ditioning operator is analyzed in [13] and applied in [12]. The multigrid method is applied to the solution of

the incompressible Navier–Stokes equations in [2,16,32,37]. A possibility is to apply the multigrid algorithm

only to (29) instead of the ILU preconditioner. Multigrid iteration is often very efficient for the Poisson

equation and explicit knowledge of D̂Ĝ is not necessary.
4. Numerical results

The spatial and temporal accuracy of the solution is verified in four different two-dimensional geometries

with nonuniform grids. Small perturbations in the form of Orr–Sommerfeld eigenmodes are added to plane

Poiseuille flow in a straight channel. The solution is compared to a solution obtained with a spectral meth-

od. The steady state flow in a driven cavity is calculated at high Re and compared to results from [16]. Two
channels with a constriction and nonCartesian grids are the last two examples. The accuracy of the steady

state solution is evaluated using a forcing function and by comparing with a fine grid solution.
4.1. Orr–Sommerfeld modes for plane Poiseuille flow

Eigensolutions can be derived for the linearized form of the Navier–Stokes equations in a straight 2D

channel according to the Orr–Sommerfeld theory as discussed in e.g. [40]. The analysis provides eigenmodes
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that are well suited for convergence tests. A time dependent reference solution of high accuracy is computed

for this purpose.

For plane 2D Poiseuille flow, an eigenmode (wm, pm) is of the form
wmðx; y; tÞ ¼ ~wðyÞeiðax�xtÞ; pmðx; y; tÞ ¼ ~pðyÞeiðax�xtÞ;
with the streamwise wavenumber a and x = ac where c is the corresponding eigenvalue. The imaginary part

of c determines the stability of the mode. Unstable modes appear when Re exceeds a critical threshold.

Since the Orr–Sommerfeld modes result from linear stability theory we introduce the mode as a pertur-
bation to the Poiseuille base flow Ub as
U ¼ Ub þ �wm ¼ Ub þ �~wðyÞeiðax�xtÞ; Ub ¼
1� y2

0

� �
; ð42Þ
for a small �. For the pressure we have
p ¼ �pm ¼ �~pðyÞeiðax�xtÞ: ð43Þ

The mode investigated here is the least stable one for Re = 2000 which is below the critical Reynolds

number. In the left panel of Fig. 2, the Orr–Sommerfeld modes are shown for 2D Poiseuille flow at

Re = 2000. In our numerical experiments the eigenmode with eigenvalue c marked with * is chosen. Its real

and imaginary parts are cr = 0.3121 and ci = �0.0198, respectively. The eigenfunctions for u, v and p are

computed using a solver developed in [40] and can be considered to be very accurate since they are obtained
in Chebyshev space expanded in a large number of modes. The shape of the specific eigenfunctions is shown

to the right in Fig. 2.

The Orr–Sommerfeld solution with � = 10�5 is compared to the solution obtained with our scheme. The

parameter � in (42) and (43) has to be a small in order to avoid nonlinear interactions. The computational

domain is X = [0,4p] · [�1,1] covering two streamwise wavelengths of the eigenmode. Time dependent

Dirichlet boundary conditions are applied at the in- and outflow boundaries. The grid is stretched in wall

normal direction by a cubic function in order to achieve proper resolution of the largest gradients in the

velocities. The simulation is run with a small constant time step Dt = 10�4 to ensure that the numerical error
from the spatial discretization dominates until time T = 10 = 105Dt. The error is measured in the ‘2 norm
i Æ i2 and the maximum norm i Æ i1 defined as
kek22 ¼
X
i;j

e2ij=N ; kek1 ¼ max
i;j

j eij j; ð44Þ
where (i,j) is an index of an inner point in the grid and N is the total number of inner grid points.

Let f be a component of the solution determined by the Orr–Sommerfeld approximation. For grid

k,kP 0, the solution is fk with grid size locally changing with k as 2kh. Then the assumption is that the

solution error ek behaves as
ek ¼ fk � f ¼ cð2khÞq; ð45Þ

for some c depending on x,y, and the solution. In order to determine spatial convergence q the computation

is repeated on three grid sizes 16 · 21, 31 · 41, 61 · 81 with k = 2, 1, 0.

Tables 1–3 show the achieved error norms and convergence rates for the two finest grids when compared

to the next coarser grid at T = 4, 10. The results are similar at T = 2, 6, 8. The error norms are small over a

large number of time steps and the order of accuracy is the expected one in all variables.

For evaluation of the temporal error we choose an Orr–Sommerfeld mode that is propagating faster in
time in order to increase the temporal error. This eigenvalue has a large real part and is marked in the eigen-

value map in the left part of Fig. 3. It is the third least stable mode for Re = 2000 with cr = 0.9209 and ci =

�0.0782. The corresponding eigenfunctions are plotted in the right of Fig. 3.
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Fig. 2. Eigenvalues (left) for 2D Orr–Sommerfeld modes in plane Poiseuille flow at Re = 2000, a = 1. Shape (right) of the normalized,

absolute eigenfunctions of velocities u (dashed) v (dash-dotted) and pressure (solid) of the mode corresponding to the eigenvalue

marked with *.
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The solution is computed with the same � at T = 5 with three different time steps on a 31 · 41 grid with-

out stretching in the same channel. The time steps are large since the time error now should dominate over

the error from the spatial discretization. In the solver at least four outer iterations are applied to ensure a
fully converged pressure solution in each time step. Table 4 displays the errors measured as in (44) and the

order of accuracy r is calculated as in (45) with h replaced by Dt. Second order accurate solutions are

achieved in all components. Similar results are obtained at T = 2.5. The global error grows linearly in u

and v and is almost constant in p. Second order temporal accuracy in p is usually not obtained with only

one outer iteration or only one pressure correction per timestep.

4.2. Driven cavity

The Navier–Stokes equations are solved for the driven cavity problem. This is a standard problem on a

two-dimensional square [0,1] · [0, 1] with a Cartesian grid. The steady flow is computed in a closed cavity

with a prescribed velocity at the upper wall y = 1. The streamlines of the solution at two different Re are

found in Fig. 4. The steady state is reached by integrating the time-dependent equation until the time-de-

rivatives are sufficiently small. Only one outer iteration in the iterative method is needed in the time steps.

The velocities are computed at Re = 5000 on two grids with Dx and Dy increasing from the walls toward

the center of the cavity. They are compared with the second order solutions in [16] on a vertical (u) and a
Table 1

Orr–Sommerfeld solutions for 2D Poiseuille flow

Time step u Error norms (q-order)

16 · 21 31 · 41 61 · 81

40,000 ‘2 1.00e � 06 4.91e � 08(4.3) 1.64e � 09(4.9)

Max 3.58e � 06 2.07e � 07(4.1) 5.90e � 09(5.1)

100,000 ‘2 1.55e � 06 5.73e � 08(4.8) 2.09e � 09(4.8)

Max 6.62e � 06 1.98e � 07(5.1) 8.03e � 09(4.6)

The spatial errors in u measured in the ‘2 and maximum norms and order of accuracy are shown.



Table 2

Orr–Sommerfeld solutions for 2D Poiseuille flow

Time step v Error norms (q-order)

16 · 21 31 · 41 61 · 81

40,000 ‘2 1.54e � 07 3.75e � 09(5.4) 1.60e � 10(4.6)

Max 4.52e � 07 1.00e � 08(5.5) 5.65e � 10(4.1)

100,000 ‘2 3.76e � 07 8.21e � 09(5.5) 2.16e � 10(5.2)

Max 8.58e � 07 2.12e � 08(5.3) 9.76e � 10(4.4)

The spatial errors in v measured in the ‘2 and maximum norms and order of accuracy are shown.

Table 3

Orr–Sommerfeld solutions for 2D Poiseuille flow

Time step p Error norms (q-order)

16 · 21 31 · 41 61 · 81

40,000 ‘2 1.96e � 07 8.14e � 09(4.6) 8.95e � 10(3.2)

Max 4.08e � 07 1.96e � 08(4.4) 1.66e � 09(3.6)

100,000 ‘2 1.78e � 07 1.03e � 08(4.1) 8.02e � 10(3.7)

Max 5.00e � 07 2.35e � 08(4.4) 1.75e � 09(3.8)

The spatial errors in p measured in the ‘2 and maximum norms and order of accuracy are shown.
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horizontal (v) line through the geometrical midpoint. The results on the two grid lines in our grid closest to

the midpoint are displayed in Figs. 5 and 6. The improvement on the grid with half the step size is barely

visible in the Figures indicating that 41 · 41 grid points suffice for a well resolved solution. For a closer

inspection of the computed data, the results are compared in Tables 5 and 6 at selected stations. Our data

have been interpolated to the grid points in [16] and behave smoothly when the grid lines approach the mid-

point and the number of grid points increase. The results are close to the values in [16] where the grid has

129 · 129 equidistantly distributed points.
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Fig. 3. Eigenvalues (left) for 2D Orr–Sommerfeld modes in plane Poiseuille flow at Re = 2000, a = 1. Shape (right), of normalized,

absolute eigenfunctions of velocities u (dashed), v (dash-dotted) and pressure (solid) of the mode corresponding the eigenvalue marked

with *.



Table 4

Time accuracy at T = 5.0

Dt = 0.1 Dt = 0.05 Dt = 0.025

u Error (order) 2.10e � 06 5.46e � 07(1.9) 1.46e � 07(1.9)

v Error (order) 6.34e � 07 1.60e � 07(2.0) 3.53e � 08(2.2)

p Error (order) 1.98e � 07 5.28e � 08(1.9) 1.18e � 08(2.2)

The temporal error is measured in the maximum norm and the order of the error is computed.
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4.3. Forced solution in a constricting channel

The flow is computed in a curvilinear grid covering a constricting channel of the same geometry as in

[30]. The method in [30] is of fourth order in space for the streamfunction-vorticity formulation of Na-

vier–Stokes� equations.
The transformation (5) from the Cartesian equidistant computational space (n,g) to the physical curvi-

linear channel geometry is performed by a conformal mapping. This mapping z ¼ ZðfÞ between the com-

putational (f = n + ig) and the physical space (z = x + iy) is here computed analytically by the relation
z ¼ fðAþ B tanhðfÞÞ; ð46Þ

or in component form
x ¼ Anþ B
H

n sinhð2nÞ � g sinð2gÞ½ �; y ¼ Agþ B
H

g sinhð2nÞ þ n sinð2gÞ½ �; ð47Þ
where H ¼ coshð2nÞ þ cosð2gÞ as in [30]. The channel width far away from the constriction is 2a at the inlet

and 2b at the outlet. The constants A and B are defined as
A ¼ aþ b
2k

; B ¼ b� a
2k

; ð48Þ
where the shape factor k controls the smoothness of the constriction.

The geometry in this experiment is a channel with a = 1 and b = 0.7 in (48), see Fig. 7. The boundary

conditions of Dirichlet type (15) are chosen such that
0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

y

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

y

Fig. 4. Streamlines of the computed solution at Re = 400 (left) and Re = 5000 (right).
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Fig. 5. The computed solution for u at Re = 5000 (solid lines) is compared with results from [16] (s) along x = 0.5 on a 41 · 41 grid

(left) and on a 81 · 81 grid (right).
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u ¼ � cosðxÞ sinðyÞ expð�2t=ReÞ;
v ¼ sinðxÞ cosðyÞ expð�2t=ReÞ;

p ¼ � 1

4
ðcosð2xÞ þ sinð2yÞÞ expð�4t=ReÞ;

ð49Þ
is a �twilight-zone flow� solution [23] with a suitable forcing right-hand side in the momentum equation (1).
The same solution is chosen in [41]. The velocity is divergence free in (49). The solution for Re = 100 is com-

puted on grids with different resolution and compared with the exact solution (49). The spatial accuracy is

evaluated as in (45) and the Tables 1–3. The timestep Dt = 10�5 is small to let the space error dominate.

The error ek on three grids k = 0, 1, 2, with grid size 2kh is evaluated and the order q is computed by

comparing ek, k = 0, 1, with e2 in Table 7.
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Table 5

Comparison with data from [16] for Re = 5000

Ghia et al. Fourth order method

Grid 129 · 129 41 · 41 81 · 81 81 · 81 41 · 41

y x = 0.5 x = 0.4741 x = 0.4870 x = 0.5130 x = 0.5259

0.0625 �4.290e � 01 �4.407e � 01 �4.232e � 01 �4.215e � 01 �4.374e � 01

0.4531 �7.404e � 02 �5.566e � 02 �6.122e � 02 �6.316e � 02 �5.988e � 02

0.6172 8.183e � 02 7.264e � 02 6.941e � 02 6.730e � 02 6.890e � 02

0.9531 4.604e � 01 4.649e � 01 4.558e � 01 4.614e � 01 4.682e � 01

The computed u at x = 0.5 for different y-values in [16] using 129 · 129 grid points is compared with our solution at x = 0.4741,

0.4870,0.5130, and 0.5259, using 41 · 41,81 · 81, 81 · 81, and 41 · 41 grid points.
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4.4. Unforced solution in a constricting channel

A constricting channel with a shape factor k = 0.7 and a ratio between the outlet and inlet heights of b/

a = 0.7 in (48) is constructed with the geometry depicted in Fig. 8. The grid is stretched in the streamwise

direction before the conformal mapping (46) and (47), is applied in order to move the inlet and outlet far-

ther away from the constriction. We use the formula
Table

Compa

Ghia e

Grid

x

0.0625

0.2266

0.8047

0.9531

The co

0.5130
nðn1Þ ¼ C1 sinhðC2 n1Þ þ n0; ð50Þ

where C1 = k/2, C2 = 2/k and n0 is the location of the singular point of the conformal mapping [30]. The

flow is laminar without separation at Re = 150 based on half the channel width. The no-slip condition is

applied on the upper and lower walls and a Poiseuille profile is given at the inflow boundary. The outflow

conditions are as in (16).

In the absence of an exact reference solution, the steady state solution is computed on four different grids

with resolution 2kh, k = 0,1,2,3, and 81 · 81(k = 0), 41 · 41(1), 21 · 21(2), and 11 · 11(3) grid points. The

error in a variable fk on grid k behaves as in (45) and the order of accuracy is estimated by the following
two relations:
f3 � f2
f2 � f1

� 2q1 ;
f2 � f1
f1 � f0

� 2q2 ; ð51Þ
from which we can compute two spatial convergence rates q1 and q2. The spatial error can be estimated on

the finest grid by assuming that q = 4 and eliminating f in (45). Then
6

rison with data from [16] for Re = 5000

t al. Fourth order method

129 · 129 41 · 41 81 · 81 81 · 81 41 · 41

y = 0.5 y = 0.4741 y = 0.4870 y = 0.5130 y = 0.5259

4.245e � 01 4.231e � 01 4.144e � 01 4.164e � 01 4.261e � 01

2.807e � 01 2.661e � 01 2.644e � 01 2.662e � 01 2.690e � 01

�3.002e � 01 �2.895e � 01 �2.886e � 01 �2.855e � 01 �2.832e � 01

�5.541e � 01 �5.611e � 01 �5.492e � 01 �5.551e � 01 �5.706e � 01

mputed v at y = 0.5 for different x-values in [16] using 129 · 129 grid points is compared with our solution at y = 0.4741, 0.4870,

, and 0.5259, using 41 · 41, 81 · 81, 81 · 81, and 41 · 41 grid points.
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Fig. 7. Grid of the constricting channel geometry.

Table 7

Spatial errors and convergence rates measured in the ‘2 norm of the forced solution in the constricting channel at Re = 100

Time step Maximum error and order

41 · 21 81 · 41 161 · 81

600 u 7.59e � 05 4.34e � 06(4.1) 2.41e � 07(4.2)

v 1.67e � 04 7.42e � 06(4.5) 2.43e � 07(4.9)

p 2.85e � 04 1.56e � 05(4.2) 7.94e � 07(4.3)

1000 u 7.83e � 05 4.81e � 06(4.0) 3.00e � 07(4.0)

v 1.66e � 04 7.32e � 06(4.5) 2.41e � 07(4.9)

p 2.84e � 04 1.55e � 05(4.2) 8.16e � 07(4.3)
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Fig. 8. Grid of the constricting channel geometry. The full computational domain (left) and the area around the constriction (right)

with equal scaling of the axes.
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Table 8

Spatial convergence rates and estimates of the numerical error on 81 · 81 grid measured in the ‘2 norm for laminar flow in the

constricting channel at Re = 150

Component Convergence rate (q-order) Error norm

q1 q2

u 3.33 4.02 9.78e � 06

v 2.92 3.45 1.04e � 05

p 2.65 4.18 1.92e � 05

Fig. 9.

are sho
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e0 �
1

15
ðf1 � f0Þ: ð52Þ
Due to the strong stretching in the streamwise coordinate, spatial convergence is investigated in the

region around the constriction only, shown in the right panel of Fig. 8.
The error in the ‘2 norm on the finest grid (52) and the convergence rates (51) are summarized in Table 8.

The error behaves as expected with the best order of accuracy q2 between the finest grids where the asymp-

totic regime of the error expansion in h is reached.

The convergence history of the outer and inner iterations (26), (28) and (29) is presented in Fig. 9. The

performance is displayed for a long time step and a strict tolerance and a short time step and a tolerance at

about 1/2 of the accuracy in the solution in Table 8. The initial solution in the interior is the constant zero

solution. This is then integrated for the next 250 steps with Dirichlet inflow conditions and Neumann out-

flow conditions on the velocity (16). The number of outer iterations is 1 in most of the time steps. The solu-
tion of (28) is less efficient for a smaller e and a larger Dt as expected from (34). The most time consuming

part is the solution of the Poisson-like equation (29). This part is not sensitive to changes in Dt and the

increase in number of iterations from the left to the right figure in Fig. 9 is caused by the decrease in e.
To improve the efficiency of the method, the focus should be on reducing the computing time spent on

the solution of (29).
0 50 100 150 200 250
0
1
2
3

5

10

15

20

25
outer
A
DG

0 50 100 150 200 250
0
1

3

5

10

15

20

25

30
outer
A
DG

Convergence of the iterative method in the constricting channel with a 41 · 41 grid in each time step. The number of iterations

wn for each time step. The parameters are D t = 0.001, e0 = ei = 5 · 10�6 (left), and Dt = 0.005, e0 = ei = 5 · 10�9 (right).
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5. Conclusions

An accurate discretization of the incompressible Navier–Stokes equations in the primitive variables has

been developed for two space dimensions. The method is extended in the third dimension by a spectral

approximation without too much difficulty. It is of fourth order accuracy in space and of second order
in time in all variables. These orders have been verified in numerical experiments including curvilinear grids.

The boundary conditions have been proved to be stable for Cartesian grids and are so in practice also for

nonCartesian grids. The compact difference operators simplify the treatment at the numerical boundaries.

No extra numerical boundary conditions are needed for the pressure. The variables are located on a stag-

gered grid to improve the accuracy and to make the method less prone to oscillatory behavior. A system of

linear equations is solved in every time step using outer and inner iterations with preconditioning of the

subproblems. The difficulty with the nonuniqueness of the pressure and a singular system matrix is avoided

by the definition of the boundary conditions. The outer iterations are preconditioned by an approximate
factorization with quantitative control of the remaining iteration errors.
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